##plugins.themes.bootstrap3.article.main##

The study area is located at the southern end of the Gorouol greenstone belt, northwestern Niger. This region contains significant deposits of Copper and Molybdenum hosted in intrusive rocks metamorphosed in the green shale facies. This deposit was previously considered a porphyry system of Copper (Cu) and Molybdenum (Mo) without having been the subject of advanced research. The objective of this study is to confirm or refute this hypothesis and to date the mineralisation in an absolute manner in order to readjust the mineralising episode in the history of the West African Craton. The methodology used within the framework of this study is the isotopic dating by the Re-Os method carried out on the pyrites of the host rock. The results of this analysis give an age range between 2158 ± 50 Ma and 2110 ± 51 Ma for the Cu-Mo mineralisation. This age range represents the West African Craton scale to an episode of magmatic accretion. During this accretion, the subduction phenomena between the Crusts (Oceanic and Continental) would have been favourable for the formation of the Cu and Mo mineralisation of Kourki.

References

  1. A. Abdou, H. Bonnot, D. Bory Kadey, D. Chalamet, M. Saint Martin, et I. Younfa, “Notice explicative des cartes géologiques du liptako à 1/100 000 et 1/200 000, Ministère des Mines et de la géologie,” Rép. Niger 64p., 1998.
     Google Scholar
  2. W. Abouchami, M. Boher, A. Michard, and F. Albarède, “A major 2.1 Ga event of mafic magmatism in West Africa: an early stage of crustal accretion,” Journal of Geophysical Research, vol. 95, no. B11, pp. 17605-17629, Oct. 1990.
     Google Scholar
  3. I. Ama Salah, J. P. Liégeois, et A. Pouclet, “Evolution d’un arc insulaire océanique birimien précoce au Liptako nigérien (Sirba): géologie, géochronologie et géochimie,” Journal of African Sciences, vol. 22, pp. 235-254, 1996.
     Google Scholar
  4. L. Baratoux, V. Metelka, S. Naba, M. W. Jessell, M. Grégoire, and J. Ganne, “Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (~2.2-2.0 Ga), Western Burkina-Faso,” Precambrian Research, vol. 191, no. 1-2, pp. 18-45, Nov. 2011.
     Google Scholar
  5. L. Baratoux, V. Metelka, S. Naba, P. Ouiya, L. Siebenaller, M.W. Jessell, A. Naré, S. Salvi, D. Beziat, and G. Franceschi, “Tectonic evolution of the Gaoua region, Burkina Faso: Implications for mineralization,” Journal of African Earth Sciences, vol. 112, pp. 419-439, Dec. 2015.
     Google Scholar
  6. R. Black, “Precambrian of West Africa,” Episodes Journal of International Geoscience, vol. 3, no. 4, pp. 3-8, Dec. 1980.
     Google Scholar
  7. M. Boher, W. Abouchami, F. Albarède, and N. T. Arndt, “Crustal growth in West Africa at 2.1 Ga,” Journal of Geophysical Research: Solid Earth, vol. 97, no. B1, pp. 345-369, Jan. 1992.
     Google Scholar
  8. J. Bouladon, J. Marcelin, and A. Papon, “Les minéralisations en cuivre et molybdène liées aux porphyrites post-ophiolitiques du Birrimien,” in Les Roches Plutoniques dans leurs rapports Avec les gîtes minéraux, (Paris: Morin, P.), 1973, pp. 291–296.
     Google Scholar
  9. W. Brownscombe, “The Tinga anomaly: A new style of gold mineralization in Ghana?” Unpublished MSc thesis, University of Oxford, 80 p.
     Google Scholar
  10. O. Cardon, “Datation Re-Os sur pyrite et traçage des sources des métaux dans des gisements de type pophyre et épithermal neutre: Exemple des gisements de Bolcana, Troita et Magura, Monts Apuseni, Roumanie. Thèse Université Nancy I, 2007, 233 p.
     Google Scholar
  11. O. Cardon, L. Reisberg, A. S. André-Mayer, J. Leroy, V. Milu, and C. Zimmermann, “Re-Os systematics of pyrite from the Bolcana porphyry coopper deposit, Apuseni Mountains, Romania,” Economic Geology, vol. 103, no. 8, pp. 1695–1702, Dec. 2008.
     Google Scholar
  12. C. Castaing, M. Bila, J. P. Milési, D. Thiéblemont, J. Le Metour, E. Egal, M. Donzeau, C. Guerrot, A. Cocherie, P. Chevremont, I. Teygey, Y. Itard, B. Zida, I. Ouédraogo, S. Koté, B. E. Kaboré, C. Ouédraogo, J. C. Ki, and C. Zunino, “Notice explicative de la carte géologique et minière du Burkina Faso à 1/1000 000,” 3ème édition, 2003. 148 p.
     Google Scholar
  13. J. S. Cline, and D. A. Vanko, “Magmatically generated saline brines related to molybdenum at Questa, New Mexico, USA,” Chapter 8 in Magma, fluids and ore deposits, J.F.H. Thompson editor, Mineralogical Association of Canada, short course, vol. 23, pp. 153-174, 1995.
     Google Scholar
  14. M. Cuney, and A. Autran, “Géologie profonde de la France. Forage scientifique d'Echassières. Une clé pour la compréhension des mécanismes magmatiques et hydrothermaux associés aux granites à métaux rares. Géologie de la France, vol. 23, pp. 1-35, 1987.
     Google Scholar
  15. D. W. Davis, W. Hirdes, U. Schaltegger, and E. A. Nunoo, “U-Pb age constraints on deposition and provenance of Birimian and gold-bearing Tarkwaian sediments in Ghana, West Africa,” Precambrian. Research, vol. 67, no. 1-2, pp. 89-107, Mar. 1994.
     Google Scholar
  16. J. L. Feybesse, M. Billa, C. Guerrot, E. Duguey, J. L. Lescuyer, J. P. Milesi, and V. Bouchot, “The paleoproterozoic Ghanaian province: Geodynamic model and ore controls, including regional stress modelling,” Precambrian Research, vol. 149, no. 3-4, pp. 149–196, Sep. 2006.
     Google Scholar
  17. S. H. Garba, M. Konaté, A. Yacouba, et A. Soumaïla, “Les minéralisations de manganèse du Nord Téra (Liptako, Ouest Niger): origine et conditions de mise en place,” REV. CAMES - vol. 5 no. 2, 15p., 2017.
     Google Scholar
  18. M. Goode, “Mineralogy and geochemistry of the Kivilompolo Molybdenum mineralisation in the Peräpohja belt, northern Finland,” p. 57, 2019.
     Google Scholar
  19. S. Goodman, A. E. Williams-Jones, and P. Carles, “Structural controls on the Archean Troilus gold-copper deposit, Quebec, Canada. Economic Geology, vol. 100, no. 3, pp. 577–582, May 2005.
     Google Scholar
  20. N. A. Goryachev, and F. Pirajno, “Gold deposits and gold metallogeny of Far East Russia,” Ore Geology Reviews, vol. 59, pp. 123–151, Jun. 2014.
     Google Scholar
  21. M. Gueye, A. M. Van den Kerkhof, U. F. Hein, M. Diene, A. Mucke, and S. Siegesmund, “Structural control, fluid inclusions and cathodoluminescence studies of Birimian gold-bearing quartz vein systems in the Paleoproterozoic Mako belt, southeastern Senegal,” South African Journal of Geology, vol. 116, no. 2, pp. 199-218, Dec. 2013.
     Google Scholar
  22. M. Gueye, P. M. Ngom, M. Diène, Y. Thiam, S. Siegesmund, K. Wemmer, and S. Pawlig, S, “Intrusive rocks and tectono-metamorphic evolution of the Mako Paleoproterozoic belt (Eastern Senegal, West Africa),” Journal of African Earth Sciences, vol. 50, no. 2-4, pp. 88-110, Feb. 2008.
     Google Scholar
  23. W. Hirdes, D. W. Davis, “U–Pb geochronology of paleoproterozoic rocks in the southern part of the Kedougou-Kéniéba Inlier, Senegal, West Africa: evidence for diachronous accretionary development of the Eburnean province,” Precambrian Research, vol. 118, no. 1-2, pp. 83-99, Sep. 2002.
     Google Scholar
  24. M. Jébrak, É. Marcoux, “Québec (Province). Ministère des ressources naturelles et de la faune, Québec G. Géologie des ressources minerals,” Ministère des ressources naturelles et de la faune; 2008.
     Google Scholar
  25. M. W. Jessell, P. O. Amponsah, L. Baratoux, D. K. Asiedu, G. K. Loh, and J. Ganne, “Crustal-scale transcurrent shearing in paleoproterozoic Sefwi-Sunyani-Comoe region, West Africa,” Precambrian Research, vol. 212, pp. 155-168, Aug. 2012.
     Google Scholar
  26. M. Konaté, Y. Ahmed, A. Gärtner, D. A. Amadou, H. I. Maharou, K. Tourba, M. Hofmann, J. Zieger, U. Linnemann, “U–Pb detrital zircon ages of sediments from the Firgoun and Niamey areas (eastern border of West African Craton, West Niger),” Comptes Rendus Geoscience, vol. 350, no. 6, pp. 267–278, Sep. 2018.
     Google Scholar
  27. A. N. Kouamelan, C. Delor, J. J. Peucat, M. Ballèvre, S. Doumbia, et J. Camil, “Influence significative du Birimien sur le domaine Archéen de la Côte d’Ivoire,” Séance Spéc. Soc. Géol. Fr., « Géodynamique du Paléoprotérozoïque », Orléans, vol. 17, p. 21, Nov. 1995.
     Google Scholar
  28. I. Kusnir, H. Sylwestrazak, et V. Zajaczkowsky, “Rapport sommaire sur les travaux des recherches sur l'indice de Mo-Cu de Kourki effectués jusqu'au 1er Juin, Recherches minières dans deux zones. Rapport PNUD n°OP-EXREP-B-5/19, Niamey, 1971.
     Google Scholar
  29. P. Laznicka, “Giant metallic deposits: Future sources of industrial metals,” Springer Science & Business Media, p. 732, Jun. 2006.
     Google Scholar
  30. E. Le Mignot, L. Siebenaller, D. Béziat, S. Salvi, A. S. André-Mayer, L. Reisberg, G. Velásquez, C. Zimmermann, and G. Franceschi, “The paleoproterozoic copper-gold deposit of Gaoua, Burkina Faso: evidence for a superimposition of a porphyry copper with an orogenic gold deposit. Economic Geology Special Issue article - West Africa, 2015.
     Google Scholar
  31. A. Leube, W. Hirdes, R. Mauer, and G. O. Kesse, “The early Proterozoic Birimian Supergroup of Ghana and some aspects of its associated gold mineralisation,” Precambrian Research, vol. 46, no. 1-2, pp.139-165, Jan. 1990.
     Google Scholar
  32. M. Lompo, Geodynamic evolution of the 2.25-2.0 Ga Palaeoproterozoic magmatic rocks in the Man-Leo Shield of the West African Craton. A model of subsidence of an oceanic plateau, Geological Society, London, Special Publications, Jan. 2009, vol. 323, no. 1, pp. 231-54.
     Google Scholar
  33. M. Lompo, “Paleoproterozoic structural evolution of the Man-Leo Shield (West Africa). Key structures for vertical to transcurrent tectonics,” Journal of African Earth Sciences, vol. 58, no. 1, pp. 19-36, Aug. 2010.
     Google Scholar
  34. E. Machens, “Mission de prospection générale du liptako, rapport de fin de mission (1958-1964) et inventaire d’indice de minéralisation. B.R.G.M; 74, Rue de la fédération Paris XVe.” pp. 81-84, 1964.
     Google Scholar
  35. E. Machens, “Contribution à l'étude des formations du socle cristallin et de la couverture sédimentaire de l'Ouest de la République du Niger,” Ed. BRGM; 1973.
     Google Scholar
  36. J. Marcelin, “Notice explicative de la carte géologique au 1/200000 Gaoua-Batié. Édition,” BRGM, Orléans. 1971.
     Google Scholar
  37. L. D. Meinert, “Skarns and skarn deposits,” Geoscience Canada, vol. 19, pp. 145–162, 1992.
     Google Scholar
  38. L. D. Meinert, D. R. Lentz, and R. J. Newberry, “Special issue devoted to skarn deposits,” Economic Geology, vol. 95, pp. 1183–1370, 2000.
     Google Scholar
  39. J. P. Milesi. Métallogénie comparée des provinces métallifères paléoprotérozoïques: synthèses métallogéniques et potentiels métallifères. Université de Lyon I. 2001.
     Google Scholar
  40. J. P. Milési, J. L. Feybesse, P. Ledru, A. Dommanget, M. F. Ouedraogo, E. Marcoux, A. Prost, C. Vinchon, J. P. Sylvain, and V. Johan (1989). West African gold deposits in their lower Proterozoic lithostructural setting. Chroniques de La Recherche Minière France 3–98.
     Google Scholar
  41. J. P. Milési, J. L. Feybesse, P. Pinna, Y. Deschamps, H. Kampunzu, S. Muhongo, J. L. Lescuyer, E. Le Goff, C. Delor, M. Billa, and F. Ralay. Geological map of Africa 1: 10,000,000, SIGAfrique project. In20th conference of African geology, BRGM, Orléans, France 2004 Jun (pp. 2-7).
     Google Scholar
  42. S.I. Nakai, A. N. Halliday, S. E. Kesler, and H. D. Jones, “Rb–Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley type ore deposits,” Nature, vol. 346, no. 6282, pp. 354-357, Jul. 1990.
     Google Scholar
  43. M. Ouedraogou. Carte des gîtes et indices minéraux du Burkina Faso 1/1 000 000. Ouagadougou, Burkina Faso: Bureau des Mines et de la Géologie du Burkina (BUMIGEB). 1991.
     Google Scholar
  44. S. Pawlig, M. Gueye, R. Klischies, S. Schwarz, K. Wemmer, and S. Siegesmund, “Geochemical and Sr-Nd isotopic data on the Birimian of the Kedougou-Kenieba inlier (eastern Senegal): Implications on the Palaeoproterozoic evolution of the West African craton,” South African Journal of Geology, vol. 109, no. 3, pp. 411-427, Sep. 2006.
     Google Scholar
  45. T. Petke, and L. W. Diamond, “Rb-Sr dating of sphalerite based on fluid inclusion-host mineral isochrons; a clarification of why it works,” Economic Geology, vol. 91, no. 5, pp. 951-956, Aug. 1996.
     Google Scholar
  46. F. Pirajno, (2009). Hydrothermal processes and Mineral Systems, Geological Survey of Western Australia, Perth, WA, Autralia. Ed Springer, 2009, 1250p.
     Google Scholar
  47. J. Pons, P. Barbey, D. Dupuis, and J. M Léger, “Mechanisms of pluton emplacement and structural evolution of a 2.1 Ga juvenile continental crust: the Birimian of southwestern Niger,” Precambrian Research, vol. 70, vol. 3-4, pp. 281-301, Jan. 1995.
     Google Scholar
  48. A. Pouclet, M. Vidal, C. Delor, Y. Simeon, et G. Alric, “Le volcanisme birimien du nord-est de la Cote-d'Ivoire, mise en evidence de deux phases volcano-tectoniques distinctes dans l'evolution geodynamique du Paleoproterozoique,” Bulletin de la Société géologique de France, vol. 67, no. 4, pp. 529-541, Jul. 1996.
     Google Scholar
  49. C. Ranc (1975). Mission de sondages Kourki. - Rapport de campagne 1974-1975. Rapp. PNUD/Niamey. p. 38.
     Google Scholar
  50. R. Reitchelt (1972). Géologie du Gourma. Mémoire du DRGM n°53, PP 216-302.
     Google Scholar
  51. E. Seedorff, J. H. Dilles, J. M. Proffett, M. T. Einaudi, L. Zurcher, W. J. A. Stavast, D. A. Johnson, and M. D. Barton, “Porphyry-related deposits: Characteristics and origin of hypogene features,” Economic geology, 100th Anniversary volume, pp. 251–298, 2005.
     Google Scholar
  52. R. Sillitoe, “Some thoughts on gold-rich porphyry copper deposits,” Mineralium Deposita, vol. 14, no. 2, pp. 161-174, Aug. 1979.
     Google Scholar
  53. R. H. Sillitoe, “Iron oxide-copper-gold deposits: an Andean view,” Mineralium Deposita, vol. 38, no. 7, pp. 787-812, Oct. 2003.
     Google Scholar
  54. R. H. Sillitoe. An appraisal of Dienemera and Gongondy copper-gold prospects, Gaoua district, Burkina Faso. Unpublished report for Wentworth Resources Pty Ltd. 2007.
     Google Scholar
  55. R. H. Sillitoe, “Porphyry copper systems,” Economic geology, vol. 105, no. 1, pp. 3-41, Jan. 2010.
     Google Scholar
  56. W. D. Sinclair (2007). Porphyry deposits, in Goodfellow, W.D., ed, Mineral deposits of Canada: A synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces and Exploration Methods: Geological Association of Canada, Mineral deposits Division, Special Publication N°5, pp. 223-243.
     Google Scholar
  57. M. I. Smoliar, R. J. Walker, and J. W. Morgan, “Re-Os ages of group IIA, IIIA, IVA, and IVB iron meteorites,” Science, vol. 271, no. 5252, pp. 1099-1102, Feb. 1996.
     Google Scholar
  58. Soumaila A. (2000). Etude structurale, pétrographique et géochimique de la ceinture de Diagorou-Darbani, Liptako, Niger Occidental (Afrique de l’Ouest). Thèse, Univ. Franche-Comté, 253p. Soumaila A. Etude structurale, pétrographique et géochimique de la ceinture birimienne de Diagorou-Darbani Liptako, Niger occidental (Afrique de l'ouest) (Doctoral dissertation, Besançon).
     Google Scholar
  59. A. Soumaila, P. Henry, Z. Garba, M. Rossi, “REE patterns, Nd-Sm and U-Pb ages of the metamorphic rocks of the Diagorou-Darbani greenstone belt (Liptako, SW Niger): implication for Birimian (Palaeoproterozoic) crustal genesis,” Geological Society, London, Special Publications, vol. 297, no. 1, pp. 19-32, Jan. 2008.
     Google Scholar
  60. A. Soumaila, P. Henry, et M. Rossy, “Contexte de mise en place des roches basiques de la ceinture de roches vertes birimienne de Diagorou-Darbani (Liptako, Niger, Afrique de l'Ouest): plateau océanique ou environnement d'arc/bassin arrière-arc océanique,” Comptes Rendus Geoscience, vol. 336, no. 13, pp. 1137-1147, Oct. 2004.
     Google Scholar
  61. Soumaila, A., Konaté M. (2005). Caractérisation de la déformation dans la ceinture birimienne (paléoprotérozoïque) de Diagorou-Darbani (Liptako nigérien, Afrique de l'Ouest). Afr. Geo. Revew., vol. 13, no. 3, pp 161-178.
     Google Scholar
  62. Stein HJ. 13.4 Dating and Tracing the History of Ore Formation. Treatise on Geochemistry (second edition). Oxford, Elsevier. 2014:87-118.
     Google Scholar
  63. Tapsoba B, Lo CH, Jahn BM, Chung SL, Wenmenga U, Iizuka Y. Chemical and Sr–Nd isotopic compositions and zircon U–Pb ages of the Birimian granitoids from NE Burkina Faso, West African Craton: Implications on the geodynamic setting and crustal evolution. Precambrian Research. 2013 Jan 1; 224:364-396.
     Google Scholar
  64. Thiéblemont D. (2004). Genèse de la croûte continentale en Afrique de l’Ouest à l’Archéen : une approche « régionale et systématique ». Habilitation à Diriger des Recherches, 149 p.
     Google Scholar
  65. Trompette R. (1997), "Neoproterozoic (~600 Ma) aggregation of Western Gondwana : a tentative scenario", Precambrian Research, vol. 82, pp. 101-112. Trompette R. Neoproterozoic (∼ 600 Ma) aggregation of Western Gondwana: a tentative scenario. Precambrian Research. 1997 Mar 1;82(1-2):101-12.
     Google Scholar
  66. Tshibubudze A, Hein KA. Gold mineralisation in the Essakane goldfield in Burkina Faso, West African craton. Ore Geology Reviews. 2016 Oct 1; 78:652-9.
     Google Scholar
  67. Tshibubudze A, Hein KA, Peters LF, Woolfe AJ, McCuaig TC. Oldest U-Pb crystallisation age for the West African Craton From the Oudalan-Gorouol Belt of Burkina Faso. South African Journal of Geology. 2013 Jun 1;116(1):169-81.
     Google Scholar
  68. Tshibubudze A, Hein KA, Marquis P. The Markoye Shear Zone in NE Burkina Faso. Journal of African Earth Sciences. 2009 Dec 1;55(5):245-56.
     Google Scholar
  69. Pouclet A, Vidal M, Delor C, Simeon Y, Alric G. Le volcanisme birimien du nord-est de la Cote-d'Ivoire, mise en evidence de deux phases volcano-tectoniques distinctes dans l'evolution geodynamique du Paleoproterozoique. Bulletin de la Société géologique de France. 1996 Jul 1;167(4):529-41.
     Google Scholar
  70. Wanhainen, C. (2005). On the origin and evolution of the Palaeoproterozoic Aitik Cu-Au-Ag deposit, Northern Sweden. PhD thesis. Lulea University of Technology.
     Google Scholar
  71. Wanhainen C, Broman C, Martinsson O. The Aitik Cu–Au–Ag deposit in northern Sweden: a product of high salinity fluids. Mineralium Deposita. 2003 Sep 1;38(6):715-726.
     Google Scholar
  72. Weihed P. A review of Palaeoproterozoic intrusive hosted Cu-Au-Fe-oxide deposits in northern Sweden.
     Google Scholar
  73. White WH, Bookstrom AA, Kamilli RJ, Ganster MW, Smith R, Ranta DE, Steininger RC. Character and origin of Climax-type molybdenum deposits. Economic Geology. 1981; 75:270-316.
     Google Scholar
  74. White A, Burgess R, Charnley N, Selby D, Whitehouse M, Robb L, Waters D. Constraints on the timing of late-Eburnean metamorphism, gold mineralisation and regional exhumation at Damang mine, Ghana. Precambrian Research. 2014 Apr 1; 243:18-38.
     Google Scholar
  75. Zeegers, H., Goni, J., and Wilhelm, E. (1981). Geochemistry of lateritic profiles over a disseminated Cu-Mo mineralization in Upper Volta (West Africa)-preliminary results. In Lateritization Processes, (Rotterdam), pp. 359–368.
     Google Scholar
  76. Zhang J, Linnen R, Lin S, Davis D, Martin R. Paleoproterozoic hydrothermal reactivation in a Neoarchean orogenic lode-gold deposit of the southern Abitibi subprovince: U-Pb monazite geochronological evidence from the Young-Davidson mine, Ontario. Precambrian Research. 2014 Aug 1; 249:263-72.
     Google Scholar