##plugins.themes.bootstrap3.article.main##

This paper presents petrographic and geochemical data on magmatic rocks of the north-western Melfi massif (part of the Gera Massif at the center of Chad) in the Adamawa-Yadé domain. The study area consists of syenite and granite, all crosscut by minor dykes and quartz veins. Syenite and granite show porphyritic texture and are dominated by K-feldspar and plagioclase phenocrysts, biotite, a variable proportion of quartz, and often few amphiboles. These rocks are characterized by low Mg#, Ni and Co, high K2O, Na2O, LREE/HREE ratio, I-type geochemistry as well as positive Eu anomaly, suggesting an origin from partial melting of crustal rocks (here garnet-amphibolite) and metasomatized mantle-derived component with the input of sediments. The compositional evolution from syenites to granite raises the fractional crystallization process in their petrogenesis and involves the fractionation of amphibole, biotite, plagioclase, apatite, magnetite, and ilmenite. Studied samples are affected by the post-magmatic hydrothermal alteration with an assemblage made of epidote, biotite, sericite, and opaques minerals. In addition, they are characterized by considerable gold concentration (Au = 0.6-3.8 ppm) suggesting that the north-western part of the Melfi massif in the center of Chad is a preferential site of gold mineralization. The K-rich calc-alkaline to shoshonitic geochemistry and the pronounced Nb, Ta, and Ti negative anomalies of these rocks, combined with their high Nb/Ta (7.55-32.10), La/Nb (1.80-11.73), and La/Ta (21.53-376.60) ratios but low Rb (57.60-138.30 ppm) indicate that they are subduction-related or arc-related magmas belonging to the Great Central Gondwana Arc (GCGA) formed further to east-directed subduction direction.

References

  1. Hamiton WB. The volcanic central Andes-A modem model for the Cretaceous batholiths and tectonics of western North America. Oregon Department of Geology and Mineral Industries Bulletin, 1969; 65: 175–184.
     Google Scholar
  2. Coney PJ. The geotectonic cycle and the new global tectonics. Geological Society of America Bulletin, 1970; 81: 739–748.
     Google Scholar
  3. Dewey JF Bird JM. Mountain belts and the new global tectonics. Journal of Geophysical Research, 1970; 75: 2625–2647. https://doi.org/10.1029/JB075i014p02625.
     Google Scholar
  4. Dickinson WR. Plate tectonics and sedimentation, in W.R. Dickinson, ed., Tectonics and sedimentation; Soc. Econ. Paleont. Mineral. Speccial Publication, 1974, 22, 1–27.
     Google Scholar
  5. Miyashiro A. Paired and unpaired metamorphic belts. Tectonophysics, 1973, 17, 241-254.
     Google Scholar
  6. Pitcher WS. Granite type and tectonic environment. In: Hsü, K., (Ed.), Mountain Building Processes. Academic Press, London, 1983, 19–40.
     Google Scholar
  7. Pitcher WS. The nature and origin of granitic rocks. Chapman and Hall, Glasgow, 1993, pp. 321.
     Google Scholar
  8. Pearce JA, Harris NBW, Tindle AG. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology. 1984, 25: 956–983.
     Google Scholar
  9. Barbarin OA. Integrating service and research on African American youth and families: Conceptual and methodological issues. In: McLoyd, VC; Steinberg, L., editors. Studying minority adolescents: Conceptual, methodological and theoretical issues. Englewood Cliffs, NJ: Lawrence Erlbaum, 1998; 297–325
     Google Scholar
  10. Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos. 1999; 46: 605–626.
     Google Scholar
  11. Nédeléc A. Bouchez JL. Petrologie des Granites. Vuibert, Societé Geologique de France, p. 237, 2011.
     Google Scholar
  12. Scarrow JH, Molina JF, Bea F, Montero P, Vaughan APM, Lamprophyre dikes as tectonic markers of late orogenic transtension timing and kinematics: A case study from the Central Iberian Zone. Tectonics, DOI: 10.1029/2010TC002755, 2011.
     Google Scholar
  13. McCaig AM, The geochemistry of volatile fluid flow in shear zones. In: Deformation Enhanced Fluid Transport in the Earth’s crust and Mantle. (ed. Holness, MB), Chapman and Hall, London, 1997.
     Google Scholar
  14. De Saint-Blanquat M, Tikoff B. Development of magmatic to solid-state fabrics during syntectonic emplacement of the Mono Creek granite, Sierra Nevada batholith. In: Bouchez JL, et al. (eds.) Granite: from segregation of melt to emplacement fabrics. Dordrecht: Kluwer Academic Publishers, 1997.
     Google Scholar
  15. De Saint blanquat M, Tikoff B, Teyssier C, Vigneresse JL. Transpressional Knematics and magmatic arcs. In: Holdsworth, RE., Strachan, R.A. & Dewey, J.F, editors «Continental transpressional and transtenstional tectonics». Geological Society, London, Special Publications, 1998; 135: 327–340.
     Google Scholar
  16. Ngako V, Affaton P, Nnange JM, T.H. Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements. Journal of African Earth Sciences, 2003; 36: 207–214.
     Google Scholar
  17. Ngako V, Jegouzo P, Nzenti JP. Champ de raccourcissement et de cratonisation du Nord-Cameroun du paléozoïque supérieur au paléozoïque moyen. Comptes Rendus Académie des Sciences de Paris, 1992; 315: 457–463.
     Google Scholar
  18. Nzenti JP, Barbey P, Macaudière J, Soba D. Origin and evolution of the late Precambrian high-grade Yaoundé gneisses (Cameroon). Précambrian Research, 1988; 38: 91–109.
     Google Scholar
  19. Poidevin JL. La tectonique Pan-Africaine à la bordure Nord du craton congolais: l’orogénèse des Oubanguides (abstract). 12th colloque on the African Geology, Musée Royal de l’Afrique Central, Tervuren, Belguim, p.75, 1983.
     Google Scholar
  20. Castaing C, Feybesse JL, Thiéblemont D, Triboulet C, Chévremont P. Palaeogeographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or Intracontinental convergence between major blocks. Precambrian Research, 1994; 67: 327–344.
     Google Scholar
  21. Trompette R. Neoproterozoic (~ 600Ma) aggregation of Western Gondwana: a tentative scenario. Precambrian Research, 82, 101–112, 1997.
     Google Scholar
  22. Toteu SF, Penaye J, Poudjom Djomani Y. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 2004; 41: 73–85.
     Google Scholar
  23. Pouclet A, Vidal M, Doumnang J-C, Vicat JP, Tchameni R. Neoproterozoic crustal evolution in Southern Chad: Pan-African ocean basin closing, arc accretion and late- to post-orogenic granitic intrusion. Journal of African Earth Sciences, 2006; 44: 543–560.
     Google Scholar
  24. Tchameni R, Pouclet A, Penaye J, Ganwa AA, Toteu, SF. Petrography and geochemistry of the Ngaoundere Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting. Journal of African Earth Sciences, 2006; 44: 511–529.
     Google Scholar
  25. Kwékam M, Liegeois JP, Njonfang E, Affaton P, Hartmann G, Tchoua F. Nature origin and significance of the Pan-African high-K calc-alkaline Fomopea Plutonic complex in the Central African fold belt (Cameroon). Journal of African Earth Sciences, 2010; 44: 57, 79–95, 2010.
     Google Scholar
  26. Kwékam M, Affaton P, Bruguier O, Liégeois JP, Hartmann G, Njonfang E. The Pan-African Kekem gabbro-norite (West-Cameroon), U-Pb zircon age, geochemistry and Sr-Nd isotopes: Geodynamical implication for the evolution on the Central African fold belt. Journal of African Earth Sciences, 2013; 84: 70–88.
     Google Scholar
  27. Saha Fouotsa AN, Vanderhaeghe O, Barbey P, Eglinger A, Tchameni R, Zeh A. Fosso Tchunte, P.M., Nomo Negue. E, The geologic record of the exhumed root of the Central African Orogenic Belt in the central Cameroon domain (Mbé – Sassa-Mbersi region). Journal of African Earth Sciences, 2019; 151: 286–314.
     Google Scholar
  28. Isseini M, André-Mayer AS, Vanderhaeghe O, Barbey P, Deloule E; A-type granites from the Pan-African orogenic belt in south-western Chad constrained using geochemistry, Sr-Nd isotopes and U-Pb geochronology. Lithos, 2012; 153: 39–52.
     Google Scholar
  29. Wit M, Bowring S, Buchwaldt R, Dudas FO, MacPhee, D, Tagne-Kamga G, Dunn N, Salet AM, Nambatingar D. Geochemical reconnaissance of the Guera and Ouaddaï Massifs in Chad: evolution of Proterozoic crust in the Central Sahara Shield. South African Journal of Geology, 2021; 124(2): 353–382.
     Google Scholar
  30. Milesi JP, Feybesse JL, Pinna P, Deschamps Y, Kampunzu H, Muhongo S, Lescuyer JL, Le Goff E, Delor C, Billa M, Ralay F, Heinry C. Geological map of Africa 1:10 000 000. SIGAfrique Project. http://www.sigafrique.net , 2004.
     Google Scholar
  31. Toteu SF, Van Schmus WR, Penaye J, Michard A. New U-Pb and Sm-Nd Data from North-Central Cameroon and Its Bearing on the Pre-Pan African History of Central Africa. Precambrian Research, 2001; 108: 45-73. http://dx.doi.org/10.1016/S0301-9268(00)00149-2.
     Google Scholar
  32. Wolff JP, Carte Géologique de la République de Tchad. Scale 1:1 500 000. Bureau de Recherches Géologique et Minières, Orléans, 1964.
     Google Scholar
  33. Louis P. Contribution géophysique à la connaissance géologique du bassin du Lac Tchad, Mémoire 42, ORSTIM, Paris, 1970.
     Google Scholar
  34. Braitenberg C, Mariani P, Ebbing J, Sprlak PMM. The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields. Geological Society of London Special Publication, 2011; 357: 329–341.
     Google Scholar
  35. Liégeois JP, Abdelsalam GM, Ennih N, Ouabadi A. Metacraton: Nature, genesis and behavior. Gondwana Research, 2013; 23, 220–237.
     Google Scholar
  36. Kasser MY. Evolution précambrienne de la région du Mayo Kebbi (Tchad). Un segment de la Chaîne Panafricaine. Thèse de Doctorat, Muséum d'Histoire Naturelle de Paris (France), p. 217, 1995.
     Google Scholar
  37. Vincent PM. Extraction du zircon dans un granite en provenance du District de Mongo n° R6-1 (coupure géologique d'AmTiman-ouest). Brazaville, Direction des Mines et de la Géologie, 1956a.
     Google Scholar
  38. Vincent PM. Extraction du zircon dans un granite hétérogène métasomatique en provenance du District de Mongo n° R6-3 (coupure géologique d'AmTiman-ouest). Brazaville, Direction des Mines et de la Géologie, 1956b.
     Google Scholar
  39. Vincent PM Extraction du zircon dans un granite intrusif porphyroïde en provenance du District de Melfi n° R6-4 (coupure géologique d'AmTiman-ouest). Brazaville, Direction des Mines et de la Géologie, 1956.
     Google Scholar
  40. Vincent PM. Extraction du zircon dans un microgranite en provenance du District de Mongo n° R6-2 (coupure géologique d'AmTiman-ouest). Brazaville, DIrection des Mines et de la Géologie, 1956d.
     Google Scholar
  41. Kusnir I, Moutaye HA. Ressources minérales du Tchad: une revue. Journal of African Earth Sciences, 24, 549–562, 1997.
     Google Scholar
  42. Kusnir I. Géologie, ressources minérales et ressources en eau du Tchad, N'djaména, Centre National d'Appui à la Recherche, 1995.
     Google Scholar
  43. Cox KG, Bell JD. Pankhurst, R.J, The Interpretation of Igneous Rocks. Allen and Unwin, London, p. 450, 1979. http://dx.doi.org/10.1007/978-94-017-3373-1.
     Google Scholar
  44. Wilson M. Igneous Petrogenesis A Global Tectonic Approach. Chapman & Hall. London, p. 466, 1989.
     Google Scholar
  45. Peccerillo A, Taylor SR. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81, 1976. http://dx.doi.org/10.1007/BF00384745.
     Google Scholar
  46. [Maniar PD, Piccoli PM. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101, 635–643, 1989. http://dx.doi.org/10.1130/0016-7606.
     Google Scholar
  47. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 2001; 42(11): 20332048.
     Google Scholar
  48. McDonough WF, Sun SS. The composition of the Earth. Chemical Geology, 1995; 120: 223–253.
     Google Scholar
  49. Jung HG, Casler MD, Ni W, Phiilips, RL. Reduction of ferulate ester deposition and cross-linking improves cell wall digestibility of grasses. J. Dairy Sci. 82 (Suppl. 1), 1999; 39–40.
     Google Scholar
  50. Lameyre J. Les magmas granitiques: leurs comportements, leurs associations et leurs sources. Memoire hors-serie Societé Geologique de ́ ́ ́France. 1980; 10: 51–62.
     Google Scholar
  51. Kwékam M, Dunkl I, Fozing EM, Hartmann G, Njanko T, Tcheumenak KJ, Njonfang E. Syn-kinematic ferroan high-K I-type granites from Dschang in southwestern Cameroon: U–Pb age, geochemistry and implications for crustal growth in the late Pan-African orogeny. Geological Society, London, Special Publicationsn 2020; 502, SP502-2019-2019.
     Google Scholar
  52. Fozing EM, Kwékam M, Gountié Dedzo M, Asaah Asobo NE, Njanko T, Tcheumenak Kouémo J, Petrography and geochemistry of amphibolites from the Fomopéa Pluton (West Cameroon): origin and geodynamic setting. Journal of African Earth Sciences, 2019; 154: 181–194. doi: 10.1016/j.jafrearsci.2019.03.024.
     Google Scholar
  53. Chappell BW, White AJR. I–and S–type granites in the Lachlan Fold Belt Trans. Royal Soc. Edinburgh: Earth Sciences, 83, 1–26, 1992.
     Google Scholar
  54. White AJR, Chappell BW. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. In: Roddick, J. A. (ed.) Circum-Pacific Plutonic Terranes. Geological Society American Bullettin. 159, 21–34, 1983.
     Google Scholar
  55. Rapp RP, Watson EB, Miller CF. Partial melting of amphibolite/eclogite and the origin of Archcan trondhjemites and tonalites, Precambrian Research, 51, 1–25, 1991.
     Google Scholar
  56. Gromet LP, Silver LT. REE variations across the Peninsular Ranges Batholith: implications for batholithic petrogenesis and crustal growth in magmatic arcs. Journal of Petrology, 28, 75–125, 1987.
     Google Scholar
  57. Nzenti JP, Kapajika B, Wörner G, Lubala TR. Synkinematic emplacement of granitoids in a Pan-African shear zone in Central Cameroon. Journal of African Earth Science, 2006; 45(1):74–86.
     Google Scholar
  58. Njanko T, Nedelec A, Affaton P. Synkinematic high-K calc-alkaline plutons associated with the Pan-African Central Cameroon shear zone (W-Tibati area): petrology and geodynamic significance. Journal of African Earth Sciences, 2006; 44, 494–510, 2006.
     Google Scholar
  59. Asaah AV, Zoheir B, Lehmann B, Frei D, Burgess R, Suh CE. Geochemistry and geochronology of the ~620 Ma gold-associated Batouri granitoids, Cameroon. International Geological Review. 2014; 57, 1485-1509.
     Google Scholar
  60. Negue EN, Tchameni R, Vanderhaeghe O, Barbey P, Tchunte PMF, Wambo JDT, Lemdjou BY, Saha Fouotsa NA. Petrography and Geochemistry of the Mbip Granitic Massif, SW Tcholliré (Central North Cameroon): Petrogenetic and Geodynamic Implication. International Journal of Geosciences, 2015; 6, 761–775.
     Google Scholar
  61. Ngatcha RB, Okunlola OA, Suh CE, Ateh KI, Hofmann A. Petrochemical characterization of Neoproterozoic Colomine granitoids, SE Cameroon: Implications for gold mineralization. Lithos, 2019; 175–192.
     Google Scholar
  62. Ngamy Kamwa A, Tchakounte JN, Nkoumbou C, Owona S, Tchouankoue J.-P, Mvondo OJ. Petrology and geochemistry of syncollisional pan-african granitoid intrusion in the Archaean Adamawa-Yade crust: the yoro-yangben massif, (Sw-Bafia, Cameroon). Journal of African Earth Sciences, 2019; 150: 401–414.
     Google Scholar
  63. Fossi DH, Ganno S, Tankwa MN, Tamehe LS, Kenné, PA, Tchoundi CLK, Kankeu B, Nzenti JP. Petrogenesis and tectonic setting of the Pan-African Deng-Deng intrusive complex in the Lom series, Eastern Cameroon. Journal of African Earth Sciences, 2022; 188: 104-484 https://doi.org/10.1016/j.jafrearsci.2022.104484.
     Google Scholar
  64. Hofmann AW, Jochum KP, Seufert HM, White WM. Nb and Pb in oceanic basalts: New constraintson mantle evolution. Earth and Planetary Sciences Letters, 1986; 79: 33–45.
     Google Scholar
  65. Hanyu T, Tatsumi Y, Nakai S, Chang Q, Miyazaki T, Sato K, Tani K, Shibata T, Yoshida T. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: constraints from geochemistry. Geochemical Geophysical Geosystem 2006; 7: 1–29.
     Google Scholar
  66. Handley HK, Macpherson CG, Davidson Berlo JPK, Lowry D. Constraining Fluid and Sediment Contributions to Subduction-Related Magmatism in Indonesia: Ijen Volcanic Complex. Journal of Petrology, 2007; 46: 1155–1183.
     Google Scholar
  67. Moyen F, Laurent O, Michou C, Chelle Couzinié S, Vanderhaeghe O. Collision vs.subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos, 2017; 277: 154–177.
     Google Scholar
  68. Béa F. Residence of REE, Y, Th and U in granites and crustals protolith; implications for chemistry of crustal Melts. Journal of Petrology, 1996; 37: 521–552.
     Google Scholar
  69. Rudnick RL. Xenolith samples of the lower continental crust. In: Fountain, D.M., Arculus, R.J., Kay, R.W. (Eds.). The Lower Continental Crust. Elsevier, New York, 269–316, 199.
     Google Scholar
  70. Bouyo Houketchang M, Penaye J, Njel UO, Moussango API, Sep JPN, Nyama BA, Wassouo WJ, Abate, JME, Yaya F, Mahamat A, Hao Ye, Fei Wun, Geochronological, geochemical and mineralogical constraints of emplacement depth of TTG suite from the Sinassi Batholith in the Central African Fold Belt (CAFB) of northern Cameroon: Implications for tectonomagmatic evolution. Journal of African Earth Sciences, 2016; 116: 9–41.
     Google Scholar
  71. Bouyo MH, Zhao Y, Penaye J, Zhang SH, Njel UO. Neoproterozoic subduction-related metavolcanic and metasedimentary rocks from the Rey Bouba Greenstone Belt of north Central Cameroon in the Central African fold Belt: New insights into a continental are geodynamic setting. Precambrian Research, 2015; 21: 40–53.
     Google Scholar
  72. Carlier G, Lorand J.P, Audebaud E, Kienast JR. Petrology of an unusual orthopyroxene-bearing minette suite from southeastern Peru, Eastern Andean Cordillera: Al-rich lamproites contaminated by peraluminous granites. Journal of Volcanology and Geothermal Research, 1997; 75: 59–87.
     Google Scholar
  73. Taylor SR, McLennan SM. The geochemical evolution of the continental crust. Reviews of Geophysics, 1995; 33: 241–265.
     Google Scholar
  74. Pearce JA, Harris NB, Tindle AG. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrolog, 1974; 25(4): 956–983.
     Google Scholar
  75. Coira B, Kay SM, Viramonte J. Upper Cenozoic magmatic evolution of the Argentine Puna - A model for changing subduction geometry: International Geology Review, 1993; 35: p. 677–720.
     Google Scholar
  76. Thompson RN, Morrison MA, Hendry GL, Parry SJ. An assessment of relative roles of crust and mantle in magma genesis: an elemental approach. Philosophical Transactions of the Royalty Society of London, Series, A 1984; 310: 549–590.
     Google Scholar
  77. Blevin PL. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: implications for gold-rich ore systems. Resource Geology. 2004; 54: 241–252. doi:10.1111/j.1751-3928.2004.tb00205.x.
     Google Scholar